Initial value problem of the logistic equation
In this example, we will prove the existence of a solution of the logistic equation
\[\begin{cases} \displaystyle \frac{d}{dt} u(t) = f(u(t)) \bydef u(t)(1 - u(t)),\\ u(0) = 1/2. \end{cases}\]
Let $\nu > 0$,
\[\ell^1_{\nu, \mathbb{N}} \bydef \left\{ \{ x_\alpha \}_{\alpha \ge 0} \in \mathbb{R}^\mathbb{N} \, : \, \| x \|_{\ell^1_{\nu, \mathbb{N}}} \bydef \sum_{\alpha \ge 0} |x_\alpha| \nu^\alpha < +\infty \right\}\]
and $* : \ell^1_{\nu, \mathbb{N}} \times \ell^1_{\nu, \mathbb{N}} \to \ell^1_{\nu, \mathbb{N}}$ be the Cauchy product given by
\[x * y \bydef \left\{ \sum_{\beta = 0}^\alpha x_{\alpha - \beta} y_\beta \right\}_{\alpha \ge 0}, \qquad \text{for all } x, y \in \ell^1_{\nu, \mathbb{N}}.\]
For any sequence $x \in \ell^1_{\nu, \mathbb{N}}$, the Taylor series $\sum_{\alpha \ge 0} x_\alpha t^\alpha$ defines an analytic function in $C^\omega([-\nu, \nu], \mathbb{R})$; while the Cauchy product $*$ corresponds to the product of Taylor series in sequence space.
The Banach space $\ell^1_{\nu, \mathbb{N}}$ is a suitable space to represent a solution of the logistic equation. Indeed, it is a standard result from ODE theory that analytic vector fields yield analytic solutions.[1]
It follows that the sequence of coefficients of a Taylor series solving the initial value problem is a zero of the mapping $F : \ell^1_{\nu, \mathbb{N}} \to \ell^1_{\nu, \mathbb{N}}$ given component-wise by
\[( F(x) )_\alpha \bydef \begin{cases} x_0 - 1/2, & \alpha = 0,\\ \alpha x_\alpha - (x*(1 - x))_{\alpha-1}, & \alpha \ge 1. \end{cases}\]
The mapping $F$ and its Fréchet derivative, denoted $DF$, may be implemented as follows:
using RadiiPolynomial
function F!(F, x)
F[0] = x[0] - 0.5
v = differentiate(x) - x*(1 - x)
for α ∈ 1:order(F)
F[α] = v[α-1]
end
return F
end
function DF!(DF, x)
DF .= 0
DF[0,0] = 1
DF[1:end,:] .= Derivative(1) - project(Multiplication(1 - 2x), domain(DF), Taylor(order(codomain(DF))-1))
return DF
end
Consider the fixed-point operator $T : \ell^1_{\nu, \mathbb{N}} \to \ell^1_{\nu, \mathbb{N}}$ defined by
\[T(x) \bydef x - A F(x),\]
where $A : \ell^1_{\nu, \mathbb{N}} \to \ell^1_{\nu, \mathbb{N}}$ is an injective operator corresponding to an approximation of $DF(\bar{x})^{-1}$ for some numerical zero $\bar{x} \in \ell^1_{\nu, \mathbb{N}}$ of $F$.
Given an initial guess, the numerical zero $\bar{x}$ of $F$ may be obtained by Newton's method:
n = 27
x̄ = Sequence(Taylor(n), zeros(n+1))
x̄, success = newton!((F, DF, x) -> (F!(F, x), DF!(DF, x)), x̄)
Newton's method: Inf-norm, tol = 1.0e-12, maxiter = 15
iteration |F(x)|
-------------------------------------
0 5.0000e-01 |DF(x)\F(x)| = 5.0000e-01
1 5.0000e-01 |DF(x)\F(x)| = 2.5000e-01
2 1.2500e-01 |DF(x)\F(x)| = 3.1250e-02
3 1.7578e-03 |DF(x)\F(x)| = 1.9187e-04
4 8.1306e-08 |DF(x)\F(x)| = 4.2857e-09
5 5.2940e-23
Let $R > 0$. Since $T \in C^2(\ell^1_{\nu, \mathbb{N}}, \ell^1_{\nu, \mathbb{N}})$ we may use the second-order Radii Polynomial Theorem such that we need to estimate $\|T(\bar{x}) - \bar{x}\|_{\ell^1_{\nu, \mathbb{N}}}$, $\|DT(\bar{x})\|_{\mathscr{B}(\ell^1_{\nu, \mathbb{N}}, \ell^1_{\nu, \mathbb{N}})}$ and $\sup_{x \in \text{cl}( B_R(\bar{x}) )} \|D^2T(x)\|_{\mathscr{B}(\ell^1_{\nu, \mathbb{N}}, \mathscr{B}(\ell^1_{\nu, \mathbb{N}}, \ell^1_{\nu, \mathbb{N}}))}$.
To this end, consider the truncation operator
\[(\Pi_n x)_\alpha \bydef \begin{cases} x_\alpha, & \alpha \le n,\\ 0, & \alpha > n, \end{cases} \qquad \text{for all } x \in \ell^1_{\nu, \mathbb{N}},\]
as well as the complementary operator $\Pi_{\infty(n)} \bydef I - \Pi_n$.
Thus, we have
\[\begin{aligned} \|T(\bar{x}) - \bar{x}\|_{\ell^1_{\nu, \mathbb{N}}} &\le \|\Pi_n A \Pi_n F(\bar{x})\|_{\ell^1_{\nu, \mathbb{N}}} + \frac{1}{n+1} \|\Pi_{\infty(n)} F(\bar{x})\|_{\ell^1_{\nu, \mathbb{N}}},\\ \|DT(\bar{x})\|_{\mathscr{B}(\ell^1_{\nu, \mathbb{N}}, \ell^1_{\nu, \mathbb{N}})} &\le \max\left(\|\Pi_n A \Pi_n DF(\bar{x}) \Pi_n - \Pi_n\|_{\mathscr{B}(\ell^1_{\nu, \mathbb{N}}, \ell^1_{\nu, \mathbb{N}})}, \frac{\nu}{n+1} \|2\bar{x} - 1\|_{\ell^1_{\nu, \mathbb{N}}}\right),\\ \sup_{x \in \text{cl}( B_R(\bar{x}) )} \|D^2T(x)\|_{\mathscr{B}(\ell^1_{\nu, \mathbb{N}}, \mathscr{B}(\ell^1_{\nu, \mathbb{N}}, \ell^1_{\nu, \mathbb{N}}))} &\le 2 \nu \left( \|\Pi_n A \Pi_n\|_{\mathscr{B}(\ell^1_{\nu, \mathbb{N}}, \ell^1_{\nu, \mathbb{N}})} + \frac{1}{n+1} \right). \end{aligned}\]
In particular, from the latter estimate, we may freely choose $R = \infty$.
The computer-assisted proof may be implemented as follows:
ν = interval(2)
X = ℓ¹(GeometricWeight(ν))
R = Inf
x̄_interval = interval.(x̄)
F_interval = zeros(eltype(x̄_interval), Taylor(2n+1))
F!(F_interval, x̄_interval)
tail_F_interval = copy(F_interval)
tail_F_interval[0:n] .= interval(0)
DF_interval = zeros(eltype(x̄_interval), Taylor(n), Taylor(n))
DF!(DF_interval, x̄_interval)
A = interval.(inv(mid.(DF_interval)))
bound_tail_A = inv(interval(n+1))
# computation of the bounds
Y = norm(A * F_interval, X) + bound_tail_A * norm(tail_F_interval, X)
Z₁ = max(opnorm(A * DF_interval - UniformScaling(interval(1)), X), bound_tail_A * ν * norm(interval(2) * x̄_interval - interval(1), X))
Z₂ = (opnorm(A, X) + bound_tail_A) * ν * interval(2)
setdisplay(:full)
interval_of_existence(Y, Z₁, Z₂, R)
Interval{Float64}(2.407124940192978e-6, 0.06419613744065546, com)_NG
The following figure[2] shows the numerical approximation of the proven solution in the interval $[-2, 2]$ along with the theoretical solution $t \mapsto (1 + e^{-t})^{-1}$.
- 1A. Hungria, J.-P. Lessard and J. D. Mireles James, Rigorous numerics for analytic solutions of differential equations: the radii polynomial approach, Mathematics of Computation, 85 (2016), 1427-1459.
- 2S. Danisch and J. Krumbiegel, Makie.jl: Flexible high-performance data visualization for Julia, Journal of Open Source Software, 6 (2021), 3349.