Sequences
A Sequence
is a structure representing a sequence in a prescribed VectorSpace
. More precisely, a Sequence
is comprised of the two fields space::VectorSpace
and coefficients::AbstractVector
with matching dimension and length.
julia> a = Sequence(Taylor(1), [1, 2])
Sequence in Taylor(1) with coefficients Vector{Int64}: 1 2
The two fields space
and coefficients
are accessible via the respective functions of the same name.
julia> space(a)
Taylor(1)
julia> coefficients(a)
2-element Vector{Int64}: 1 2
For convenience, the methods zeros
, ones
, fill
and fill!
are available:
julia> s = Taylor(1)
Taylor(1)
julia> zeros(s)
Sequence in Taylor(1) with coefficients Vector{Float64}: 0.0 0.0
julia> ones(s)
Sequence in Taylor(1) with coefficients Vector{Float64}: 1.0 1.0
julia> fill(2, s)
Sequence in Taylor(1) with coefficients Vector{Int64}: 2 2
julia> fill!(zeros(s), 2)
Sequence in Taylor(1) with coefficients Vector{Float64}: 2.0 2.0
The coefficients of a Sequence
are indexed according to the indices of the space (as given by indices
).
julia> a[0:1] # indices(space(a))
2-element Vector{Int64}: 1 2
When the space of a Sequence
is a CartesianSpace
, its coefficients are given as the concatenation of the coefficients associated with each space. The function component
extracts a Sequence
composing the cartesian space.
julia> b = Sequence(ParameterSpace() × Taylor(1)^2, [1, 2, 3, 4, 5])
Sequence in 𝕂 × Taylor(1)² with coefficients Vector{Int64}: 1 2 3 4 5
julia> b[1:5] # indices(space(b))
5-element Vector{Int64}: 1 2 3 4 5
julia> component(b, 1) # extract the sequence associated with the space ParameterSpace()
Sequence in 𝕂 with coefficients SubArray{Int64, 1, Vector{Int64}, Tuple{UnitRange{Int64}}, true}: 1
julia> component(b, 2) # extract the sequence associated with the space Taylor(1)^2
Sequence in Taylor(1)² with coefficients SubArray{Int64, 1, Vector{Int64}, Tuple{UnitRange{Int64}}, true}: 2 3 4 5
julia> component(component(b, 2), 1)
Sequence in Taylor(1) with coefficients SubArray{Int64, 1, Vector{Int64}, Tuple{UnitRange{Int64}}, true}: 2 3
julia> component(component(b, 2), 2)
Sequence in Taylor(1) with coefficients SubArray{Int64, 1, Vector{Int64}, Tuple{UnitRange{Int64}}, true}: 4 5
Similarly, the function eachcomponent
returns a Generator
whose iterates yield each Sequence
composing the cartesian space.
Arithmetic
The addition and subtraction operations are implemented as the +
and -
functions respectively. Their bar counterparts add_bar
(unicode alias +\bar<tab>
) and sub_bar
(unicode alias -\bar<tab>
) give the result projected in the smallest compatible space between the operands.
julia> c = Sequence(Taylor(1), [0, 1])
Sequence in Taylor(1) with coefficients Vector{Int64}: 0 1
julia> d = Sequence(Taylor(2), [1, 2, 1])
Sequence in Taylor(2) with coefficients Vector{Int64}: 1 2 1
julia> c + d
Sequence in Taylor(2) with coefficients Vector{Int64}: 1 3 1
julia> c - d
Sequence in Taylor(2) with coefficients Vector{Int64}: -1 -1 -1
julia> add_bar(c, d) # project(c + d, Taylor(1))
Sequence in Taylor(1) with coefficients Vector{Int64}: 1 3
julia> sub_bar(c, d) # project(c - d, Taylor(1))
Sequence in Taylor(1) with coefficients Vector{Int64}: -1 -1
The discrete convolution between sequences whose spaces are a SequenceSpace
is implemented as the *(::Sequence{<:SequenceSpace}, ::Sequence{<:SequenceSpace})
, mul!(::Sequence{<:SequenceSpace}, ::Sequence{<:SequenceSpace}, ::Sequence{<:SequenceSpace}, ::Number, ::Number)
and ^(::Sequence{<:SequenceSpace}, ::Int)
functions. Their bar counterparts mul_bar
(unicode alias *\bar<tab>
) and pow_bar
(unicode alias ^\bar<tab>
) give the result projected in the smallest compatible space between the operands; in general, mul_bar
is not associative.
julia> c * d
Sequence in Taylor(3) with coefficients Vector{Int64}: 0 1 2 1
julia> c ^ 3
Sequence in Taylor(3) with coefficients Vector{Int64}: 0 0 0 1
julia> mul_bar(c, d) # project(c * d, Taylor(1))
Sequence in Taylor(1) with coefficients Vector{Int64}: 0 1
julia> pow_bar(c, 3) # project(c ^ 3, Taylor(1))
Sequence in Taylor(1) with coefficients Vector{Int64}: 0 0
To improve performance, the FFT algorithm may be used to compute discrete convolutions via the Convolution Theorem. However, the performance gain is tempered with the loss of accuracy which may stop the decay of the coefficients.
julia> x = Sequence(Taylor(3), interval.([inv(10_000.0 ^ i) for i ∈ 0:3]))
Sequence in Taylor(3) with coefficients Vector{Interval{Float64}}: Interval{Float64}(1.0, 1.0, com) Interval{Float64}(0.0001, 0.0001, com) Interval{Float64}(1.0e-8, 1.0e-8, com) Interval{Float64}(1.0e-12, 1.0e-12, com)
julia> x³ = x ^ 3
Sequence in Taylor(9) with coefficients Vector{Interval{Float64}}: Interval{Float64}(1.0, 1.0, com) Interval{Float64}(0.0003, 0.00030000000000000003, com) Interval{Float64}(6.0e-8, 6.000000000000001e-8, com) Interval{Float64}(1.0e-11, 1.0000000000000003e-11, com) Interval{Float64}(1.1999999999999998e-15, 1.2000000000000006e-15, com) Interval{Float64}(1.1999999999999996e-19, 1.2000000000000004e-19, com) Interval{Float64}(9.999999999999997e-24, 1.0000000000000004e-23, com) Interval{Float64}(5.999999999999999e-28, 6.000000000000002e-28, com) Interval{Float64}(2.9999999999999995e-32, 3.0000000000000006e-32, com) Interval{Float64}(9.999999999999998e-37, 1.0000000000000001e-36, com)
julia> x³_fft = rifft!(zero(x³), fft(x, fft_size(space(x³))) .^ 3)
Sequence in Taylor(9) with coefficients Vector{Interval{Float64}}: Interval{Float64}(0.9999999999999988, 1.0000000000000013, com) Interval{Float64}(0.00029999999999913776, 0.0003000000000009015, com) Interval{Float64}(5.999999926209087e-8, 6.000000089712177e-8, com) Interval{Float64}(9.999147625819226e-12, 1.000107365363463e-11, com) Interval{Float64}(5.767225544805468e-16, 1.9773326896552844e-15, com) Interval{Float64}(-9.430727111338557e-16, 9.818959977856102e-16, com) Interval{Float64}(-7.735442496893302e-16, 8.539669600072433e-16, com) Interval{Float64}(-8.537022549179915e-16, 8.856667395928615e-16, com) Interval{Float64}(-5.83108068801701e-16, 5.276202109764927e-16, com) Interval{Float64}(-9.314916420961008e-16, 8.080597681821184e-16, com)
To circumvent machine precision limitations, the banach_rounding!
method enclose rigorously each term of the convolution beyond a prescribed order.[1]
The rounding strategy for *(::Sequence{<:SequenceSpace}, ::Sequence{<:SequenceSpace})
, mul!(::Sequence{<:SequenceSpace}, ::Sequence{<:SequenceSpace}, ::Sequence{<:SequenceSpace}, ::Number, ::Number)
, ^(::Sequence{<:SequenceSpace}, ::Int)
, mul_bar
and pow_bar
is integrated in the functions banach_rounding_mul
, banach_rounding_mul!
, banach_rounding_pow
, banach_rounding_mul_bar
and banach_rounding_pow_bar
respectively.
julia> X = ℓ¹(GeometricWeight(interval(10_000.0)))
ℓ¹(GeometricWeight(Interval{Float64}(10000.0, 10000.0, com)))
julia> banach_rounding!(x³_fft, norm(x, X) ^ 3, X, 5)
Sequence in Taylor(9) with coefficients Vector{Interval{Float64}}: Interval{Float64}(0.9999999999999988, 1.0000000000000013, com) Interval{Float64}(0.00029999999999913776, 0.0003000000000009015, com) Interval{Float64}(5.999999926209087e-8, 6.000000089712177e-8, com) Interval{Float64}(9.999147625819226e-12, 1.000107365363463e-11, com) Interval{Float64}(5.767225544805468e-16, 1.9773326896552844e-15, com) Interval{Float64}(-6.400000000000007e-19, 6.400000000000007e-19, com) Interval{Float64}(-6.400000000000008e-23, 6.400000000000008e-23, com) Interval{Float64}(-6.4000000000000084e-27, 6.4000000000000084e-27, com) Interval{Float64}(-6.400000000000009e-31, 6.400000000000009e-31, com) Interval{Float64}(-6.40000000000001e-35, 6.40000000000001e-35, com)
API
RadiiPolynomial.Sequence
— TypeSequence{T<:VectorSpace,S<:AbstractVector}
Compactly supported sequence in the given space.
Fields:
space :: T
coefficients :: S
Constructors:
Sequence(::VectorSpace, ::AbstractVector)
Sequence(coefficients::AbstractVector)
: equivalent toSequence(ParameterSpace()^length(coefficients), coefficients)
Examples
julia> Sequence(Taylor(2), [1, 2, 1]) # 1 + 2x + x^2
Sequence in Taylor(2) with coefficients Vector{Int64}:
1
2
1
julia> Sequence(Taylor(1) ⊗ Fourier(1, 1.0), [0.5, 0.5, 0.0, 0.0, 0.5, 0.5]) # (1 + x) cos(y)
Sequence in Taylor(1) ⊗ Fourier(1, 1.0) with coefficients Vector{Float64}:
0.5
0.5
0.0
0.0
0.5
0.5
julia> Sequence([1, 2, 3])
Sequence in 𝕂³ with coefficients Vector{Int64}:
1
2
3
LinearAlgebra.mul!
— Methodmul!(c::Sequence{<:SequenceSpace}, a::Sequence{<:SequenceSpace}, b::Sequence{<:SequenceSpace}, α::Number, β::Number)
Compute project(a * b, space(c)) * α + c * β
in-place. The result is stored in c
by overwriting it.
Note: c
must not be aliased with either a
or b
.
See also: *(::Sequence{<:SequenceSpace}, ::Sequence{<:SequenceSpace})
, ^(::Sequence{<:SequenceSpace}, ::Int)
, banach_rounding_mul
, banach_rounding_mul!
and banach_rounding_pow
.
RadiiPolynomial.banach_rounding_mul!
— Methodbanach_rounding_mul!(c::Sequence{<:SequenceSpace}, a::Sequence{<:SequenceSpace}, b::Sequence{<:SequenceSpace}, X::Ell1)
Compute project(banach_rounding_mul(a, b, X), space(c))
in-place. The result is stored in c
by overwriting it.
Note: c
must not be aliased with either a
or b
.
See also: banach_rounding_mul
, banach_rounding_pow
, *(::Sequence{<:SequenceSpace}, ::Sequence{<:SequenceSpace})
, mul!(::Sequence{<:SequenceSpace}, ::Sequence{<:SequenceSpace}, ::Sequence{<:SequenceSpace}, ::Number, ::Number)
and ^(::Sequence{<:SequenceSpace}, ::Int)
.
RadiiPolynomial.banach_rounding_mul
— Methodbanach_rounding_mul(a::Sequence{<:SequenceSpace}, b::Sequence{<:SequenceSpace}, X::Ell1)
Compute the discrete convolution (associated with space(a)
and space(b)
) of a
and b
. A cut-off order is estimated such that the coefficients of the output beyond this order are rigorously enclosed.
See also: banach_rounding_mul!
, banach_rounding_pow
, *(::Sequence{<:SequenceSpace}, ::Sequence{<:SequenceSpace})
, mul!(::Sequence{<:SequenceSpace}, ::Sequence{<:SequenceSpace}, ::Sequence{<:SequenceSpace}, ::Number, ::Number)
and ^(::Sequence{<:SequenceSpace}, ::Int)
.
RadiiPolynomial.banach_rounding_pow
— Methodbanach_rounding_pow(a::Sequence{<:SequenceSpace}, n::Int, X::Ell1)
Compute the discrete convolution (associated with space(a)
) of a
with itself n
times. A cut-off order is estimated such that the coefficients of the output beyond this order are rigorously enclosed.
See also: banach_rounding_mul
, banach_rounding_mul!
, *(::Sequence{<:SequenceSpace}, ::Sequence{<:SequenceSpace})
, mul!(::Sequence{<:SequenceSpace}, ::Sequence{<:SequenceSpace}, ::Sequence{<:SequenceSpace}, ::Number, ::Number)
and ^(::Sequence{<:SequenceSpace}, ::Int)
.
- 1J.-P. Lessard, Computing discrete convolutions with verified accuracy via Banach algebras and the FFT, Applications of Mathematics, 63 (2018), 219-235.