Vector spaces
RadiiPolynomial defines a variety of vector spaces to represent the Banach space on which one applies the Radii Polynomial Theorem.
All spaces mentioned below are a subtype of the abstract type VectorSpace
.
VectorSpace
├─ CartesianSpace
│ ├─ CartesianPower
│ └─ CartesianProduct
├─ ParameterSpace
└─ SequenceSpace
├─ BaseSpace
│ ├─ Chebyshev
│ ├─ Fourier
│ └─ Taylor
└─ TensorSpace
Parameter space
A ParameterSpace
represents the commutative field of a parameter. This is the standard space to use for an unfolding parameter.
julia> 𝒫 = ParameterSpace()
𝕂
julia> dimension(𝒫)
1
julia> indices(𝒫)
Base.OneTo(1)
Sequence space
SequenceSpace
is the abstract type for all sequence spaces.
SequenceSpace
├─ BaseSpace
│ ├─ Chebyshev
│ ├─ Fourier
│ └─ Taylor
└─ TensorSpace
BaseSpace
BaseSpace
is the abstract type for all sequence spaces that are not a TensorSpace
but can be interlaced to form one.
BaseSpace
├─ Chebyshev
├─ Fourier
└─ Taylor
Taylor
For a given order $n$, a Taylor
sequence space is the span of $\{\phi_0, \dots, \phi_n\}$ where $\phi_k(t) \bydef t^k$ for $k = 0, \dots, n$ and $t \in [-\nu, \nu]$ for some appropriate $\nu > 0$.
julia> 𝒯 = Taylor(1)
Taylor(1)
julia> order(𝒯)
1
julia> dimension(𝒯)
2
julia> indices(𝒯)
0:1
Fourier
For a given order $n$ and frequency $\omega$, a Fourier
sequence space is the span of $\{\phi_{-n}, \dots, \phi_n\}$ where $\phi_k(t) \bydef e^{i \omega k t}$ for $k = -n, \dots, n$ and $t \in \mathbb{R}/2\pi\omega^{-1}\mathbb{Z}$.
julia> ℱ = Fourier(1, 1.0)
Fourier(1, 1.0)
julia> order(ℱ)
1
julia> frequency(ℱ)
1.0
julia> dimension(ℱ)
3
julia> indices(ℱ)
-1:1:1
Chebyshev
For a given order $n$, a Chebyshev
sequence space is the span of $\{\phi_0, \phi_1, \dots, \phi_n\}$ where $\phi_0(t) \bydef 1$, $\phi_1(t) \bydef t$ and $\phi_k(t) \bydef 2 t \phi_{k-1}(t) - \phi_{k-2}(t)$ for $k = 2, \dots, n$ and $t \in [-1, 1]$.
It is important to note that the coefficients $\{a_0, a_1, \dots, a_n\}$ associated with a Chebyshev
space are normalized such that $\{a_0, 2a_1, \dots, 2a_n\}$ are the actual Chebyshev coefficients.
julia> 𝒞 = Chebyshev(1)
Chebyshev(1)
julia> order(𝒞)
1
julia> dimension(𝒞)
2
julia> indices(𝒞)
0:1
Tensor space
A TensorSpace
is the tensor product of some BaseSpace
. The standard constructor for TensorSpace
is the ⊗
(\otimes<tab>
) operator.
julia> 𝒯_otimes_ℱ_otimes_𝒞 = Taylor(1) ⊗ Fourier(1, 1.0) ⊗ Chebyshev(1) # TensorSpace((Taylor(1), Fourier(1, 1.0), Chebyshev(1)))
Taylor(1) ⊗ Fourier(1, 1.0) ⊗ Chebyshev(1)
julia> nspaces(𝒯_otimes_ℱ_otimes_𝒞)
3
julia> order(𝒯_otimes_ℱ_otimes_𝒞)
(1, 1, 1)
julia> frequency(𝒯_otimes_ℱ_otimes_𝒞, 2)
1.0
julia> dimension(𝒯_otimes_ℱ_otimes_𝒞)
12
julia> dimensions(𝒯_otimes_ℱ_otimes_𝒞)
(2, 3, 2)
julia> indices(𝒯_otimes_ℱ_otimes_𝒞)
TensorIndices{Tuple{UnitRange{Int64}, StepRange{Int64, Int64}, UnitRange{Int64}}}((0:1, -1:1:1, 0:1))
Cartesian space
CartesianSpace
is the abstract type for all cartesian spaces.
CartesianSpace
├─ CartesianPower
└─ CartesianProduct
Cartesian power
A CartesianPower
is the cartesian product of an identical VectorSpace
. The standard constructor for CartesianPower
is the ^
operator.
julia> 𝒯² = Taylor(1) ^ 2 # CartesianPower(Taylor(1), 2)
Taylor(1)²
julia> nspaces(𝒯²)
2
julia> dimension(𝒯²)
4
julia> indices(𝒯²)
Base.OneTo(4)
Cartesian product
A CartesianProduct
is the cartesian product of some VectorSpace
. The standard constructor for CartesianProduct
is the ×
(\times<tab>
) operator.
julia> 𝒫_times_𝒯 = ParameterSpace() × Taylor(1) # CartesianProduct((ParameterSpace(), Taylor(1)))
𝕂 × Taylor(1)
julia> nspaces(𝒫_times_𝒯)
2
julia> dimension(𝒫_times_𝒯)
3
julia> indices(𝒫_times_𝒯)
Base.OneTo(3)
API
RadiiPolynomial.BaseSpace
— TypeBaseSpace <: SequenceSpace
Abstract type for all sequence spaces that are not a TensorSpace
but can be interlaced to form one.
RadiiPolynomial.CartesianPower
— TypeCartesianPower{T<:VectorSpace} <: CartesianSpace
Cartesian space resulting from the cartesian product of the same VectorSpace
.
Fields:
space :: T
n :: Int
Constructors:
CartesianPower(::VectorSpace, ::Int)
^(::VectorSpace, ::Int)
: equivalent toCartesianPower(::VectorSpace, ::Int)
See also: ^(::VectorSpace, ::Int)
, CartesianProduct
and ×
.
Examples
julia> s = CartesianPower(Taylor(1), 3)
Taylor(1)³
julia> space(s)
Taylor(1)
julia> nspaces(s)
3
RadiiPolynomial.CartesianProduct
— TypeCartesianProduct{T<:Tuple{Vararg{VectorSpace}}} <: CartesianSpace
Cartesian space resulting from the cartesian product of some VectorSpace
.
Field:
spaces :: T
Constructors:
CartesianProduct(::Tuple{Vararg{VectorSpace}})
CartesianProduct(spaces::VectorSpace...)
: equivalent toCartesianProduct(spaces)
×(s₁::VectorSpace, s₂::VectorSpace)
: equivalent toCartesianProduct((s₁, s₂))
×(s₁::CartesianProduct, s₂::CartesianProduct)
: equivalent toCartesianProduct((s₁.spaces..., s₂.spaces...))
×(s₁::CartesianProduct, s₂::VectorSpace)
: equivalent toCartesianProduct((s₁.spaces..., s₂))
×(s₁::VectorSpace, s₂::CartesianProduct)
: equivalent toCartesianProduct((s₁, s₂.spaces...))
See also: ×
, CartesianPower
, ^(::VectorSpace, ::Int)
.
Examples
julia> s = CartesianProduct(Taylor(1), Fourier(2, 1.0), Chebyshev(3))
Taylor(1) × Fourier(2, 1.0) × Chebyshev(3)
julia> spaces(s)
(Taylor(1), Fourier(2, 1.0), Chebyshev(3))
julia> nspaces(s)
3
RadiiPolynomial.CartesianSpace
— TypeCartesianSpace <: VectorSpace
Abstract type for all cartesian spaces.
RadiiPolynomial.Chebyshev
— TypeChebyshev <: BaseSpace
Chebyshev sequence space whose elements are Chebyshev sequences of a prescribed order.
Field:
order :: Int
Constructor:
Chebyshev(::Int)
Examples
julia> s = Chebyshev(2)
Chebyshev(2)
julia> order(s)
2
RadiiPolynomial.Fourier
— TypeFourier{T<:Real} <: BaseSpace
Fourier sequence space whose elements are Fourier sequences of a prescribed order and frequency.
Fields:
order :: Int
frequency :: T
Constructor:
Fourier(::Int, ::Real)
See also: Taylor
and Chebyshev
.
Examples
julia> s = Fourier(2, 1.0)
Fourier(2, 1.0)
julia> order(s)
2
julia> frequency(s)
1.0
RadiiPolynomial.ParameterSpace
— TypeParameterSpace <: VectorSpace
Parameter space corresponding to a commutative field.
Example
julia> ParameterSpace()
𝕂
RadiiPolynomial.SequenceSpace
— TypeSequenceSpace <: VectorSpace
Abstract type for all sequence spaces.
RadiiPolynomial.Taylor
— TypeTaylor <: BaseSpace
Taylor sequence space whose elements are Taylor sequences of a prescribed order.
Field:
order :: Int
Constructor:
Taylor(::Int)
See also: Fourier
and Chebyshev
.
Examples
julia> s = Taylor(2)
Taylor(2)
julia> order(s)
2
RadiiPolynomial.TensorIndices
— TypeTensorIndices{<:Tuple}
Multidimentional rectangular range of indices for some TensorSpace
.
Examples
julia> TensorIndices((0:2, -1:1))
TensorIndices{Tuple{UnitRange{Int64}, UnitRange{Int64}}}((0:2, -1:1))
julia> indices(Taylor(2) ⊗ Fourier(1, 1.0))
TensorIndices{Tuple{UnitRange{Int64}, StepRange{Int64, Int64}}}((0:2, -1:1:1))
RadiiPolynomial.TensorSpace
— TypeTensorSpace{T<:Tuple{Vararg{BaseSpace}}} <: SequenceSpace
Tensor space resulting from the tensor product of some BaseSpace
.
Field:
spaces :: T
Constructors:
TensorSpace(::Tuple{Vararg{BaseSpace}})
TensorSpace(spaces::BaseSpace...)
: equivalent toTensorSpace(spaces)
⊗(s₁::BaseSpace, s₂::BaseSpace)
: equivalent toTensorSpace((s₁, s₂))
⊗(s₁::TensorSpace, s₂::TensorSpace)
: equivalent toTensorSpace((s₁.spaces..., s₂.spaces...))
⊗(s₁::TensorSpace, s₂::BaseSpace)
: equivalent toTensorSpace((s₁.spaces..., s₂))
⊗(s₁::BaseSpace, s₂::TensorSpace)
: equivalent toTensorSpace((s₁, s₂.spaces...))
See also: ⊗
.
Examples
julia> s = TensorSpace(Taylor(1), Fourier(2, 1.0), Chebyshev(3))
Taylor(1) ⊗ Fourier(2, 1.0) ⊗ Chebyshev(3)
julia> spaces(s)
(Taylor(1), Fourier(2, 1.0), Chebyshev(3))
RadiiPolynomial.VectorSpace
— TypeVectorSpace
Abstract type for all vector spaces.
LinearAlgebra.:×
— Method×(::VectorSpace, ::VectorSpace)
×(::CartesianProduct, ::CartesianProduct)
×(::CartesianProduct, ::VectorSpace)
×(::VectorSpace, ::CartesianProduct)
Create a CartesianProduct
from the cartesian product of some VectorSpace
.
See also: CartesianProduct
, CartesianPower
and ^(::VectorSpace, ::Int)
.
Examples
julia> Taylor(1) × Fourier(2, 1.0)
Taylor(1) × Fourier(2, 1.0)
julia> Taylor(1) × Fourier(2, 1.0) × Chebyshev(3)
Taylor(1) × Fourier(2, 1.0) × Chebyshev(3)
julia> (Taylor(1) × Fourier(2, 1.0)) × Chebyshev(3)
Taylor(1) × Fourier(2, 1.0) × Chebyshev(3)
julia> Taylor(1) × (Fourier(2, 1.0) × Chebyshev(3))
Taylor(1) × Fourier(2, 1.0) × Chebyshev(3)
julia> ParameterSpace()^2 × ((Taylor(1) ⊗ Fourier(2, 1.0)) × Chebyshev(3))^3
𝕂² × ((Taylor(1) ⊗ Fourier(2, 1.0)) × Chebyshev(3))³
RadiiPolynomial.:⊗
— Method⊗(s₁::BaseSpace, s₂::BaseSpace)
⊗(s₁::TensorSpace, s₂::TensorSpace)
⊗(s₁::TensorSpace, s₂::BaseSpace)
⊗(s₁::BaseSpace, s₂::TensorSpace)
Create a TensorSpace
from the tensor product of some SequenceSpace
.
See also: TensorSpace
.
Examples
julia> Taylor(1) ⊗ Fourier(2, 1.0)
Taylor(1) ⊗ Fourier(2, 1.0)
julia> Taylor(1) ⊗ Fourier(2, 1.0) ⊗ Chebyshev(3)
Taylor(1) ⊗ Fourier(2, 1.0) ⊗ Chebyshev(3)
julia> Taylor(1) ⊗ (Fourier(2, 1.0) ⊗ Chebyshev(3))
Taylor(1) ⊗ Fourier(2, 1.0) ⊗ Chebyshev(3)
julia> (Taylor(1) ⊗ Fourier(2, 1.0)) ⊗ Chebyshev(3)
Taylor(1) ⊗ Fourier(2, 1.0) ⊗ Chebyshev(3)